Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18836, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914798

RESUMEN

Antibodies play a key role in the immune defence against Gram-negative bacteria. After binding to bacterial surface antigens, IgG and IgM can activate the complement system and trigger formation of lytic membrane attack complex (MAC) pores. Molecular studies to compare functional activity of antibodies on bacteria are hampered by the limited availability of well-defined antibodies against bacterial surface antigens. Therefore, we genetically engineered E. coli by expressing the StrepTagII antigen into outer membrane protein X (OmpX) and validated that these engineered bacteria were recognised by anti-StrepTagII antibodies. We then combined this antigen-antibody system with a purified complement assay to avoid interference of serum components and directly compare MAC-mediated bacterial killing via IgG1 and pentameric IgM. While both IgG1 and IgM could induce MAC-mediated killing, we show that IgM has an increased capacity to induce complement-mediated killing of E. coli compared to IgG1. While Fc mutations that enhance IgG clustering after target binding could not improve MAC formation, mutations that cause formation of pre-assembled IgG hexamers enhanced the complement activating capacity of IgG1. Altogether, we here present a system to study antibody-dependent complement activation on E. coli and show IgM's enhanced capacity over IgG to induce complement-mediated lysis of E. coli.


Asunto(s)
Anticuerpos Monoclonales , Escherichia coli , Escherichia coli/metabolismo , Anticuerpos Monoclonales/metabolismo , Proteínas del Sistema Complemento/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Activación de Complemento , Inmunoglobulina G , Antígenos de Superficie/metabolismo , Inmunoglobulina M/metabolismo
2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895956

RESUMEN

The binding of Host Defense Peptides (HDPs) to the endotoxin of Gram-negative bacteria has important unsolved aspects. For most HDPs, it is unclear if binding is part of the antibacterial mechanism or whether LPS actually provides a protective layer against HDP killing. In addition, HDP binding to LPS can block the subsequent TLR4-mediated activation of the immune system. This dual activity is important, considering that HDPs are thought of as an alternative to conventional antibiotics, which do not provide this dual activity. In this study, we systematically determine, for the first time, the influence of the O-antigen and Lipid A composition on both the antibacterial and anti-endotoxin activity of four HDPs (CATH-2, PR-39, PMAP-23, and PMAP36). The presence of the O-antigen did not affect the antibacterial activity of any of the tested HDPs. Similarly, modification of the lipid A phosphate (MCR-1 phenotype) also did not affect the activity of the HDPs. Furthermore, assessment of inner and outer membrane damage revealed that CATH-2 and PMAP-36 are profoundly membrane-active and disrupt the inner and outer membrane of Escherichia coli simultaneously, suggesting that crossing the outer membrane is the rate-limiting step in the bactericidal activity of these HDPs but is independent of the presence of an O-antigen. In contrast to killing, larger differences were observed for the anti-endotoxin properties of HDPs. CATH-2 and PMAP-36 were much stronger at suppressing LPS-induced activation of macrophages compared to PR-39 and PMAP-23. In addition, the presence of only one phosphate group in the lipid A moiety reduced the immunomodulating activity of these HDPs. Overall, the data strongly suggest that LPS composition has little effect on bacterial killing but that Lipid A modification can affect the immunomodulatory role of HDPs. This dual activity should be considered when HDPs are considered for application purposes in the treatment of infectious diseases.

3.
J Biol Chem ; 299(8): 104956, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356719

RESUMEN

The human complement system plays a crucial role in immune defense. However, its erroneous activation contributes to many serious inflammatory diseases. Since most unwanted complement effector functions result from C5 cleavage into C5a and C5b, development of C5 inhibitors, such as clinically approved monoclonal antibody eculizumab, are of great interest. Here, we developed and characterized two anti-C5 nanobodies, UNbC5-1 and UNbC5-2. Using surface plasmon resonance, we determined a binding affinity of 119.9 pM for UNbC5-1 and 7.7 pM for UNbC5-2. Competition experiments determined that the two nanobodies recognize distinct epitopes on C5. Both nanobodies efficiently interfered with C5 cleavage in a human serum environment, as they prevented red blood cell lysis via membrane attack complexes (C5b-9) and the formation of chemoattractant C5a. The cryo-EM structure of UNbC5-1 and UNbC5-2 in complex with C5 (3.6 Å resolution) revealed that the binding interfaces of UNbC5-1 and UNbC5-2 overlap with known complement inhibitors eculizumab and RaCI3, respectively. UNbC5-1 binds to the MG7 domain of C5, facilitated by a hydrophobic core and polar interactions, and UNbC5-2 interacts with the C5d domain mostly by salt bridges and hydrogen bonds. Interestingly, UNbC5-1 potently binds and inhibits C5 R885H, a genetic variant of C5 that is not recognized by eculizumab. Altogether, we identified and characterized two different, high affinity nanobodies against human C5. Both nanobodies could serve as diagnostic and/or research tools to detect C5 or inhibit C5 cleavage. Furthermore, the residues targeted by UNbC5-1 hold important information for therapeutic inhibition of different polymorphic variants of C5.


Asunto(s)
Anticuerpos Monoclonales , Complemento C5 , Anticuerpos de Dominio Único , Humanos , Activación de Complemento , Complemento C5/antagonistas & inhibidores , Complemento C5/genética , Complejo de Ataque a Membrana del Sistema Complemento , Proteínas del Sistema Complemento/metabolismo
5.
J Glob Antimicrob Resist ; 30: 406-413, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35840108

RESUMEN

OBJECTIVES: Our group recently developed a new group of antimicrobial peptides termed PepBiotics, of which peptides CR-163 and CR-172 showed optimized antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus without inducing antimicrobial resistance. In this study, the antibacterial mechanism of action and the immunomodulatory activity of these two PepBiotics was explored. METHODS: RAW264.7 cells were used to determine the ability of PepBiotics to neutralize Lipopolysaccharide (LPS)-and Lipoteichoic acid (LTA)-induced activation of macrophages. Isothermal titration calorimetry and competition assays with dansyl-labeled polymyxin B determined binding characteristics to LPS and LTA. Combined bacterial killing with subsequent macrophage activation assays was performed to determine so-called 'silent killing'. Finally, flow cytometry of peptide-treated genetically engineered Escherichia coli expressing Green Fluorescent Protein (GFP) and mCherry in the cytoplasm and periplasm, respectively, further established the antimicrobial mechanism of PepBiotics. RESULTS: Both CR-163 and CR-172 were shown to have broad-spectrum activity against ESKAPE pathogens and E. coli using a membranolytic mechanism of action. PepBiotics could exothermically bind LPS/LTA and were able to replace polymyxin B. Finally, it was demonstrated that bacteria killed by PepBiotics were less prone to stimulate immune cells, contrary to gentamicin and heat-killed bacteria that still elicited a strong immune response. CONCLUSIONS: These studies highlight the multifunctional nature of the two peptide antibiotics as both broad-spectrum antimicrobial and immunomodulator. Their ability to kill bacteria and reduce unwanted subsequent immune activation is a major advantage and highlights their potential for future therapeutic use.


Asunto(s)
Antiinfecciosos , Lipopolisacáridos , Animales , Antibacterianos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Inmunidad , Ratones , Péptidos/farmacología , Polimixina B/farmacología , Células RAW 264.7
6.
Science ; 376(6599): eabm6380, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35587511

RESUMEN

The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients suffer from episodes of life-threatening necrosis, typically triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but tumor necrosis factor receptor-mediated nuclear factor κB signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts, but not leukocytes, facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor α-toxin. Naturally elicited antibodies against α-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to α-toxin in nonleukocytic cells.


Asunto(s)
Toxinas Bacterianas , Síndrome del Maullido del Gato , Endopeptidasas , Haploinsuficiencia , Proteínas Hemolisinas , Infecciones Estafilocócicas , Staphylococcus aureus , Toxinas Bacterianas/inmunología , Síndrome del Maullido del Gato/genética , Síndrome del Maullido del Gato/inmunología , Endopeptidasas/genética , Haploinsuficiencia/genética , Haploinsuficiencia/inmunología , Proteínas Hemolisinas/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Celular/genética , Necrosis , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/patología
7.
PLoS Pathog ; 17(11): e1010051, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34752492

RESUMEN

Complement proteins can form membrane attack complex (MAC) pores that directly kill Gram-negative bacteria. MAC pores assemble by stepwise binding of C5b, C6, C7, C8 and finally C9, which can polymerize into a transmembrane ring of up to 18 C9 monomers. It is still unclear if the assembly of a polymeric-C9 ring is necessary to sufficiently damage the bacterial cell envelope to kill bacteria. In this paper, polymerization of C9 was prevented without affecting binding of C9 to C5b-8, by locking the first transmembrane helix domain of C9. Using this system, we show that polymerization of C9 strongly enhanced damage to both the bacterial outer and inner membrane, resulting in more rapid killing of several Escherichia coli and Klebsiella strains in serum. By comparing binding of wildtype and 'locked' C9 by flow cytometry, we also show that polymerization of C9 is impaired when the amount of available C9 per C5b-8 is limited. This suggests that an excess of C9 is required to efficiently form polymeric-C9. Finally, we show that polymerization of C9 was impaired on complement-resistant E. coli strains that survive killing by MAC pores. This suggests that these bacteria can specifically block polymerization of C9. All tested complement-resistant E. coli expressed LPS O-antigen (O-Ag), compared to only one out of four complement-sensitive E. coli. By restoring O-Ag expression in an O-Ag negative strain, we show that the O-Ag impairs polymerization of C9 and results in complement-resistance. Altogether, these insights are important to understand how MAC pores kill bacteria and how bacterial pathogens can resist MAC-dependent killing.


Asunto(s)
Actividad Bactericida de la Sangre , Pared Celular/patología , Complemento C9/química , Complejo de Ataque a Membrana del Sistema Complemento/farmacología , Escherichia coli/crecimiento & desarrollo , Klebsiella/crecimiento & desarrollo , Polimerizacion , Pared Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Humanos , Klebsiella/efectos de los fármacos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología
8.
PLoS Pathog ; 17(1): e1009227, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481964

RESUMEN

Infections with Gram-negative bacteria form an increasing risk for human health due to antibiotic resistance. Our immune system contains various antimicrobial proteins that can degrade the bacterial cell envelope. However, many of these proteins do not function on Gram-negative bacteria, because the impermeable outer membrane of these bacteria prevents such components from reaching their targets. Here we show that complement-dependent formation of Membrane Attack Complex (MAC) pores permeabilizes this barrier, allowing antimicrobial proteins to cross the outer membrane and exert their antimicrobial function. Specifically, we demonstrate that MAC-dependent outer membrane damage enables human lysozyme to degrade the cell wall of E. coli. Using flow cytometry and confocal microscopy, we show that the combination of MAC pores and lysozyme triggers effective E. coli cell wall degradation in human serum, thereby altering the bacterial cell morphology from rod-shaped to spherical. Completely assembled MAC pores are required to sensitize E. coli to the antimicrobial actions of lysozyme and other immune factors, such as Human Group IIA-secreted Phospholipase A2. Next to these effects in a serum environment, we observed that the MAC also sensitizes E. coli to more efficient degradation and killing inside human neutrophils. Altogether, this study serves as a proof of principle on how different players of the human immune system can work together to degrade the complex cell envelope of Gram-negative bacteria. This knowledge may facilitate the development of new antimicrobials that could stimulate or work synergistically with the immune system.


Asunto(s)
Antiinfecciosos/farmacología , Membrana Externa Bacteriana/efectos de los fármacos , Activación de Complemento , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Antibacterianos/farmacología , Pared Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/inmunología , Citometría de Flujo , Bacterias Gramnegativas/inmunología , Fosfolipasas A2 Grupo II/metabolismo , Humanos , Microscopía Confocal , Muramidasa/metabolismo , Neutrófilos/microbiología , Fagocitos/microbiología
9.
PLoS Pathog ; 16(6): e1008606, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32569291

RESUMEN

An important effector function of the human complement system is to directly kill Gram-negative bacteria via Membrane Attack Complex (MAC) pores. MAC pores are assembled when surface-bound convertase enzymes convert C5 into C5b, which together with C6, C7, C8 and multiple copies of C9 forms a transmembrane pore that damages the bacterial cell envelope. Recently, we found that bacterial killing by MAC pores requires local conversion of C5 by surface-bound convertases. In this study we aimed to understand why local assembly of MAC pores is essential for bacterial killing. Here, we show that rapid interaction of C7 with C5b6 is required to form bactericidal MAC pores on Escherichia coli. Binding experiments with fluorescently labelled C6 show that C7 prevents release of C5b6 from the bacterial surface. Moreover, trypsin shaving experiments and atomic force microscopy revealed that this rapid interaction between C7 and C5b6 is crucial to efficiently anchor C5b-7 to the bacterial cell envelope and form complete MAC pores. Using complement-resistant clinical E. coli strains, we show that bacterial pathogens can prevent complement-dependent killing by interfering with the anchoring of C5b-7. While C5 convertase assembly was unaffected, these resistant strains blocked efficient anchoring of C5b-7 and thus prevented stable insertion of MAC pores into the bacterial cell envelope. Altogether, these findings provide basic molecular insights into how bactericidal MAC pores are assembled and how bacteria evade MAC-dependent killing.


Asunto(s)
Actividad Bactericida de la Sangre , Membrana Celular/metabolismo , Pared Celular/metabolismo , Complemento C5/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Escherichia coli/metabolismo , Proteínas del Sistema Complemento/metabolismo , Células HEK293 , Humanos
10.
Bioessays ; 41(10): e1900074, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31452228

RESUMEN

The human immune system can directly lyse invading micro-organisms and aberrant host cells by generating pores in the cell envelope, called membrane attack complexes (MACs). Recent studies using single-particle cryoelectron microscopy have revealed that the MAC is an asymmetric, flexible pore and have provided a structural basis on how the MAC ruptures single lipid membranes. Despite these insights, it remains unclear how the MAC ruptures the composite cell envelope of Gram-negative bacteria. Recent functional studies on Gram-negative bacteria elucidate that local assembly of MAC pores by surface-bound C5 convertase enzymes is essential to stably insert these pores into the bacterial outer membrane (OM). These convertase-generated MAC pores can subsequently efficiently damage the bacterial inner membrane (IM), which is essential for bacterial killing. This review summarizes these recent insights of MAC assembly and discusses how MAC pores kill Gram-negative bacteria. Furthermore, this review elaborates on how MAC-dependent OM damage could lead to IM destabilization, which is currently not well understood. A better understanding on how MAC pores kill bacteria could facilitate the future development of novel strategies to treat infections with Gram-negative bacteria.


Asunto(s)
Membrana Externa Bacteriana , Complejo de Ataque a Membrana del Sistema Complemento/fisiología , Bacterias Gramnegativas , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Humanos
11.
J Innate Immun ; 10(5-6): 455-464, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30149378

RESUMEN

Complement is a complex protein network of plasma, and an integral part of the innate immune system. Complement activation results in the rapid clearance of bacteria by immune cells, and direct bacterial killing via large pore-forming complexes. Here we review important recent discoveries in the complement field, focusing on interactions relevant for the defense against bacteria. Understanding the molecular interplay between complement and bacteria is of great importance for future therapies for infectious and inflammatory diseases. Antibodies that support complement-dependent bacterial killing are of interest for the development of alternative therapies to treat infections with antibiotic-resistant bacteria. Furthermore, a variety of novel therapeutic complement inhibitors have been developed to prevent unwanted complement activation in autoimmune inflammatory diseases. A better understanding of how such inhibitors may increase the risk of bacterial infections is essential if such therapies are to be successful.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Infecciones Bacterianas/inmunología , Proteínas del Sistema Complemento/metabolismo , Animales , Antibacterianos/uso terapéutico , Citotoxicidad Celular Dependiente de Anticuerpos , Infecciones Bacterianas/tratamiento farmacológico , Activación de Complemento , Proteínas Inactivadoras de Complemento/uso terapéutico , Resistencia a Medicamentos , Interacciones Huésped-Patógeno , Humanos , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...